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What is an Elementary Physical Object? 
A System-Theoretic Approach 
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An exact system-theoretic explanation is given of the intuitive physical conjecture 
that the notion of elementarity is symmetry-dependent. 

1. INTRODUCTION 

According to a well-known theorem in general systems theory (GST), 
an arbitrary system in principal can be decomposed into subsystems 
(Mesarovic and Takahara, 1975). 

On the other hand, there is an old, intuitively justified rule that the 
elementary particles are identified with the irreducible representations of a 
certain symmetry group. This suggests that elementarity is a notion depend- 
ing on the supposed symmetries of physical objects (Martin and Spearman, 
1970). 

After a short review of the basic definitions of GST, I consider the 
problem of elementarity within the framework of GST. 

2. SUMMARY OF THE BASIC NOTIONS OF GST 

Definition 1. A system S is a relation: 

S c X x Y  

where 

x = X V ,  
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is the input set and 

is the output set of the system. 

Szab6 

Y = X ~  

Definition 2. A set C and a map R: (C x X)--> Y are called the state 
set and the (global) response function if 

(x, y) ~ Sr C & R(c, x) = y ]  (1) 

It can be shown that an arbitrary system has a global response function 
and a state set. 

The state set of the system is defined as (see Fig. 1) 

C := {fclfc: X -> Y &fc c S} (2) 

The following is a definition of a system-theoretic notion of  the compo- 
sition of systems that is adequate to the composition of two (interacting) 
physical systems: 

Definition 3. Let $1 and $2 be the following two systems: 

S1C(XIxZ2i) x(Y, XZ,2), S2C(X2xZ, z)X(Y2xZ21) 

The composition of these two systems is a system 

S = S, * $2 ~ ( X ,  x X2) x ( Y, x Y2) 

Y 

//  

f c . /  - 

f c  - 

X 

Fig. 1. 
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Xl Y1 
Z21 ~ Z12 

z~ ~ "~Z~l 
X2 Y2 

Fig. 2. 

defined as follows (Fig. 2): 

((Xl, X2), (Yl, Y2)) ~ 51 :~ 52 

<:> (3zl)(  3z2)[ z1 ~ Z,2 & z2 e Z21 

&((ZI, Z2), (Yl, Z,) E S 1 & ((X2, Z1) , (Y2, Z2)) e $2] (3) 

The question arises of whether an arbitrary system can be decomposed 
into subsystems. A well-known theorem in GST states that such a decomposi- 
tion is always possible. 

Theorem 1. Let S c (321 x X2) x ( II1 x I/-2) be a system. One can find sets 
Z12, Z21 and systems 

Sx C ( Xl  X Z21) x ( r l  x Z12), S2 c ( X2 x Z12) x ( Y2 x Z21) 

such that S = $1 * $2 (see Mesarovic and Takahara, 1975). 

3. S Y S T E M  W I T H  S Y M M E T R I E S  

The decomposition stated in Theorem 1 is only a theoretical possibility. 
The picture can be different if one requires that the subsystems have 
symmetries. The physical motivation of this requirement is that any physical 
system that really exists should have several basic symmetries. 

A symmetric system is defined as follows: 

Definition 4. Let S be a system S c X x Y and suppose that a group 
G is acting on X and Y as a transformation group. The system S is said 
to be G-symmetric iff 

( V g ~ G ) ( V x ~ X ) ( V y e Y ) [ ( g . x , g . y ) ~ S c z ~ ( x , y ) ~ S ]  (4) 

where g.  x denotes the group action. 
Let C be the state set of the system S in the form of  (2) and (3). If 

the system S is G-symmetric, one has 

(x, y)SC:> (g.  x, g.  y)SC:> (3f~ e C)[fe(g �9 x) = g.  y] 
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From 

one has 

f~(g.  x) = g" (f~(x)) = g~ y 

f~ = g .  f .  g-1 := Ugfc (5) 

This fo rmula  defines a canonical  G-ac t ion  on the state set. 
One needs the construct ion of  the state set o f  a composi te  system. Let 

S be the compos i t ion  of  subsystems $1 and $2. From (3) one has 

((Xl, x2), (yly2) ) S r (:] Zl)( ~Z2)[ ( ( xlZ2)(ylzl) ) E S 1 

&( (x2zO, (y2z2) ) ~ $2] 

The state set and the global  response  funct ion have to satisfy 

R: (Cx(X, • X2))~ Ylx r~ 

(Xl, x2, Yl, Y2) ~ S 

r (3c ~ C )[ R ( cl, Xx, x2) = (Yl, Y2)] 

r z2), (y, ,  z1)) E S 

&((x2, zl), (Y2, z2)) c Sz] 

r x1, z2) = (Yl, Zl) 

~R2(c2, x2, Za) = (Y2, z2)] 

' ~  ('~(C1, 02, Z1, z2))[R((c1, c2, Zl, z2), (Xl, x2)) 

= (Yl, Y2)] 

F rom this condi t ion one has: 

Theorem 2. For  a composi te  system the state set and  the global  response  

and 

function are 

C = C~ x C2 X Zl  X Z2 

R: ( C l x  C 2 X Z l X Z 2 ) x ( X l x X 2 ) ~  YlX Y2 

R((c, ,  c2, z1, z2) , (Xl, x2) ) 

= (Ph  ~ Rl(cl, xl, z2), prl  ~ R2(c2, x2, zO) 

and 

4. G-ELEMENTARY SYSTEM 

Definition 5. A G-symmet r i c  system S is said to be  G-e l emen ta ry  iff 
there are not  G-symmet r i c  systems $1 and $2 such that  S = Sl * $2. 
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Definition 6. A G-symmetric system is said to be irreducible if[ the 
state set does not contain G-invariant subsets, i.e., it is not a set of  the form 
C = C 1 x C2, where UgC 1 c7. C1 and UgC 2 ~ C2, Vg ~ G. 

Now the following question arises. When can a G-symmetric system 
be decomposed into G-symmetric subsystems? 

Theorem 3. A G-symmetric system S is G-elementary if and only if it 
is G-irreducible. 

Proof. Let S = $1 * $2 be a decomposition of  S. The state set of S is 

C =  C i x  C2xZ12xZ21 

From (5) one has the generated group actions on C1 and C2. Namely for 
any ( c2zlz2) ~ (?2 • Z12 • Z21, ( C~ZlZz) ~ C1 x Z~2 x Z21, and g ~ G one has 

(C2ZIZ2) w(l)(c1) = prl(Wg(ClC2ZlZ2)) 

( Cl zl z2) U(~2)(c2) = pr2( Ug ( C 1C2Z 1Z2) ) 

The subsystems S~ and $2 are G-symmetric if and only if (czz~z2) U(~ ~ and 
(ClZlZ2) U(~ 2~ are independent of  (CzZ1Z2) and (ClZlZ2), respectively. In that 
case one has 

Ug( Cx C2ZlZ2) -~- (/~(gl)(a), ~((2)(z2) , Xg( ZIZ2) ) 

where 

that is, the system S cannot be G-irreducible. 

Xg: /12 X Z21 --~ Z12 )< 7,21 
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